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Abstract ___ 

This report presents an analysis of two target materials and the associated energetics related 
to the initial penetration into the target and perforation as the penetrator exits the target. Impact 
tests were conducted for tungsten alloy rods striking rolled homogeneous armor (RHA) and 
titanium alloy plates. Rod impact velocities were nominal 1,500 and 2,000 m/s. Target 
thicknesses were chosen so that the rods would overmatch the targets and lose some 200 m/s 
during penetration. The tests utilized flash x-rays to determine rod residual lengths and 
velocities, and target plug features, to include thicknesses and velocities. From these 
observables, experimental determination of the corresponding kinetic energies (KEs) and 
estimates for the fracture energies were obtained. Also, in each case, target material adjacent to 
penetration channel walls was examined by optical and electron microscopy and x-ray diffraction 
to gain further insight into deformation processes (cavity expansion) during penetration. The 
analytic penetration model gave results that were in good agreement with the experimental 
observables. In addition, it was observed that the RHA follows traditional plastic flow of cavity 
expansion while titanium alloy shows deformation features that deviate significantly. The report 
discusses possible causes for these differences. 
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1. Introduction 

Recent advances in theoretical penetration mechanics by Grace [1] allow the problem of kinetic 

energy (KE) rod impact with plates at impact velocities extending to hypervelocity to be separated 

into two phases. These phases include (1) an initial penetration into the target and (2) a following 

perforation of the target as the rod exits the target rear surface. The model used in this study 

provided a framework through which the overall energetics could be analyzed theoretically as 

demonstrated by Rupert and Grace [2]. Previous analytic approaches to the problem have included 

adaptations of the Täte analysis for semi-infinite targets by Zook [3], the semi-empirical formulas 

of Lambert [4], and applications of "hydrocodes" [1, 3, 5], for example. Collectively, these 

approaches have produced a large body of knowledge about penetration and perforation that allows 

engineering estimates of target efficiencies against long rods. However, certain aspects of the 

penetration process have not been adequately addressed. These aspects include the nature of target 

deformation in terms of changes in microstructure of the material, where and how the KE of the rod 

is dissipated in the target, and details of target material failure and fracture during perforation. 

A recently developed model for penetration/perforation of single plates [1] is used to track details 

of the penetration events at impact velocities extending to the hydrodynamic regime, wherein the 

process is considered to take place in two separate phases. These phases include (1) an initial 

penetration into the plate target and (2) a following perforation of the target as the rod exits the target 

rear surface. Since the analysis provides mass-velocity relationships and estimates for the fracture 

energies, it is used here to analyze the energetics of penetration and perforation processes. The 

present work also includes experimental test results for tungsten alloy (WA) long rods that were fired 

at high velocity against two targets of practical interest (i.e., rolled homogeneous armor [RHA] and 

titanium-6% aluminum-4% vanadium alloy [Ti-6/4]). Optical and transmission electron microscopy 

examinations were conducted on the target materials after perforation. X-ray diffraction was 

conducted to determine any structural phase shifts in the Ti-6/4 material. This report includes results 

that demonstrate significant differences in the impact response of RHA and Ti-6/4 in terms of the 



dissipation of energy in these targets and presents supporting calculations and experimental 

observations. 

2. Experimental Approaches and Results 

2.1 Rod-Impact Tests. Rod-impact tests were designed so that the penetration efficiencies of 

RHA and Ti-6/4 plate targets could be compared. The penetrators were fired from a laboratory gun 

consisting of a Bofors' 40-mm gun breech assembly with a custom-made 40-mm smoothbore barrel 

that was positioned approximately 3 m in front of the targets. High-speed (flash) radiography was 

used to record and measure projectile pitch, yaw, striking velocity, residual rod length, residual rod 

velocity, and plug thickness and velocity. Two pairs of orthogonal x-ray tubes were positioned in 

the vertical and horizonal planes along the shot line in front of the target (as illustrated in Figure 1). 

An additional pair of x-ray tubes was positioned in the horizonal plane along the shot line behind 

the target. Propellant weight was adjusted for desired nominal velocities (y^) of 1,500 m/s and 

2,000-m/s. Shots that had a total yaw in excess of 2° were considered "no tests," and those data 

were disregarded. 
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Figure 1. Experimental Setup. 

2 



The rod projectile used in the impact experiments had a mass of 65 g, a length (H0) of 78.2 mm, 

a diameter of 7.82 mm, and a hemispherical nose shape. The rods were composed of WA, to include 

tungsten (93%), nickel (4.91%), and iron (2.11%), and were manufactured by Teledyne Firth 

Sterling. The rods were fabricated using the nominal X-21 process with 25% swaging. 

Nominal material properties are as follows: density - 17.7 g/cm3, hardness - Rockwell C Scale 

40.5-42.6, yield strength -1.089-1.169 GPa, ultimate strength -1.131-1.213 GPa, and elongation - 

5.8-10.6 % [6,7]. 

Targets included RHA (MIL-A-12560, Class 3 Steel) and titanium alloy, Ti-6/4 (6% aluminum 

and 4% vanadium). Two slightly different plate thicknesses were used for the RHA targets: 

44.69 mm with an areal density of 350.8 kg/m2 and a nominal 40 mm with a corresponding areal 

density of 307.3 kg/m2. The Ti-6/4 target thickness was 70.21 mm, having an areal density of 312.4 

kg/m2. 

Table 1 presents results of the impact experiments that were measured from the radiographs. It 

is to be noted that for both RHA and Ti-6/4 targets, higher rod-impact velocity resulted in greater 

rod residual length and velocity. The trend is not nearly so pronounced for residual rod length, but 

nonetheless, is consistent with expectations based on similar results by Zook and Frank [8] and 

Stilp [9]. The analysis of Grace [1] suggests that residual rod length is a slowly varying function of 

impact velocity, especially at relatively high velocities (over 1,500 m/s), when the rod overmatches 

the target substantially, as is the case here. On the other hand, residual rod velocity is expected to 

continue to increase at least linearly with impact velocity [1,2, 3, 8], even at high velocity, and the 

present results show that trend. 

Target channel profiles were measured from recovered targets after the shot and are given in 

Table 2. Figure 2 provides a schematic showing measurement locations relative to the target cross 

section. Two diameter measurements were recorded for each location to capture any possible 

noncircular shape of the channel. Mostly, there are only small differences in the gross channel 

features between the target materials beyond the presence of a spall ring at the Ti-6/4 target exit hole. 



Only slight differences in entrance-hole diameters, resulting from cratering, and penetration-channel 

diameters were observed.   Exit-hole diameters and spall-ring diameters appear to depend on 

Table 1. Ballistic Results 

Residual Residual 
Striking Rod Rod 

Target Pitch Yaw Velocity Length Velocity 

O (°) (m/s) (mm) (m/s) 

44.69-mm RHA -0.25 0.75 1,507 39.7 1,297 
-0.50 0.00 1,510 38.6 1,297 

40.03-mmRHA 0.00 0.00 1,973 41.7 1,893 

39.91-mmRHA -0.75 0.00 1,997 41.4  a 

70.21-mmTi-6/4 -0.50 0.25 1,501 26.1 1,110 
-1.25 0.25 1,501 26.5 1,118 

0.00 0.75 1,959 31.0 1,770   I 
1.50 0.00 1,980 31.0 1,831    1 

1 Lost second x-ray flash. 

Table 2. Hole Measurements 

Target 

Entrance-Hole 
Diameter (mm) 

Penetration-Channel 
Diameter (mm) 

Exit-Hole 
Diameter (mm) 

Min. Max. Min. Max. Min. Max. 

44.69-mm RHA 

40.03-mm RHA 
39.91-mm RHA 

19 
18 
 b 

 b 

20 
20 
 b 

 b 

15 
13 
17 
18 

15 
14 
17 
21 

23 
27 

23/38* 
28/37* 

27 
29 

23/38* 
28/37* 

70.21-mmTi-6/4 20 
18 
 b 

 b 

27 
22 
 b 

 b 

15 
13 
14 
17 

16 
15 
15 
19 

18/44* 
18/43* 
25/49* 
23/46* 

22/46* 
20/46* 
25/54* 
24/54* 

' For measurements denoted xx/yy, yy is the spall ring diameter. 
1 Obscured by Pusher Plate Impact 
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Figure 2. Target Cross Section Schematic, Where A Is the Original Surface, and B Is 
The Point Where Erosion Stops and Breakout Starts. 

target material. Ti-6/4 exit-hole diameters averaged 20 mm and 24 mm in diameter for 1,500 m/s 

and 2,000 m/s, respectively, compared to the slightly larger 26.5-mm diameter averaged of the RHA 

steel plates. Penetration-channel diameter for the RHA demonstrated a slight increase with increased 

penetrator striking velocity. Ti-6/4's penetration channel may have increased with increased 

penetrator striking velocity, but the measurements are not conclusive. Plug thicknesses were 

obtained from flash x-ray coverage from behind the targets at 1,500 m/s. The average plug thickness 

was estimated to be 13 mm for the Ti-6/4 and 4 mm for the RHA. Plugs could not be separated from 

spall on the x-rays from the 2,000-m/s tests. 

2.2 Microstructural and X-ray Diffraction Investigations. Both optical microscopy and 

transmission electron microscopy were used to study deformation of material near the channel wall. 

The midsection region of each target specimen was polished and etched for optical metallography. 



For RHA, the etchant consisted of 2.5% nitol (2.5% nitric acid [HN03], 97.0% methanol [CH3OH], 

and water [H20]) using etching times of roughly 35 s. The etchant for the Ti-6/4 target material 

consisted of 0.2-liter water, 5-ml hydrogen fluoride (HF), and 10-ml nitric acid, using etching times 

of approximately 17 s. 

Specimens for transmission electron microscopy (TEM) were systematically extracted very close 

to the channel wall by using a stop-off lacquer on the channel surface and electropolishing from the 

rear. In addition, samples were sliced from representative sections at varying distances along the 

channel midsection, extending to distances of more than 20 mm from the channel surface. These 

slices were ground and polished to a thickness of about 100 um, and 3-mm-diameter disks were 

punched from the slices. A Tenupol-3 electropolishing system was used to produce electron 

transparent thin sections utilizing the following etchants: for the RHA steel samples, 1.2 liters of 

methanol were mixed with 0.2 liters of perchloric acid (HCIO*), and electropohshing was performed 

at -15° C; for Ti-6/4 alloy, 1.4 liters of methanol and 0.14 liters of hydrochloric acid (HC1) were 

employed at -15° C. TEM analysis was done in a Hitachi H-8000 analytical TEM operated at 

200-kV accelerating potential in the conventional TEM (CTEM) mode. 

Figure 3(a) shows the longitudinal section of the RHA penetration channel. The corresponding 

optical (metallographic) views and TEM views of typical microstructures very near the channel 

surface are shown in Figure 3(b) and (d). Corresponding views at distances far removed from the 

channel are presented in Figure 3(c) and (e). There is extensive plastic deformation extending from 

the channel wall (shown in Figure 3[b]) that consists of gross grain elongation with very fine, 

elongated dislocation cell structures intermixed with carbides (shown in Figure 3[d]). Figure 3(e) 

illustrates the fact that the undisturbed RHA microstructure is a complex intermixing of ferrite 

grains, carbides, and a heavy dislocation structure. The average Vickers microhardness in that region 

is 0.32 GPa (using a 1-kgf load), while, in contrast, that taken at a distance of about 1 mm from the 

channel surface is about 0.4 GPa. Previously reported hardness profiles [10] taken outward from the 

channel surface indicate that the increased hardness and, therefore, the plastic zone due to the 

penetration process, extends radially to a distance of 70% of the channel radius or about 9.3 mm into 

the material beyond the channel surface. 
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Figure 3. RHA Penetration-Channel-Related Microstructures. (a) RHA Penetration-Channel 
Half-Section Reference. 



(b) 

Figure 3. RHA Penetration-Channel-Related Microstructures (continued). (b) Light 
Microscope View of Microstructure Extending From the Penetration-Channel 
Surface at the Midsection. (c) Light Microscope View of the RHA Target 
Microstructure 20 mm From the Penetration-Channel Surface. 
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(d) 

(e) 

Figure 3. RHA Penetration-Channel-Related Microstructures (continued), (d) TEM Bright- 
Field Image of RHA Penetration-Channel-Related Microstructure Roughly 0.2 mm 
From the Penetration-Channel Surface, (e) TEM Bright-Field Image of the Initial 
RHA Target Microstructure Corresponding to (c). 



Figure 4(a) shows the Ti-6/4 penetration-channel half section. TEM and optical microstructures 

close to the channel surface are shown in Figure 4(b) and (d), respectively. Their undisturbed 

counterparts at a distance far from the channel surface are shown in Figure 4(c) and (e). For Ti-6/4, 

no discernable differences in grain structure are seen in the optical microscopy at locations near to 

or far removed from the channel surface. This result is in stark contrast to that for RHA and suggests 

that no gross plastic deformation (grain elongation) exists in the Ti-6/4 material adjacent to the 

channel surface. However, TEM observations only 0.1 mm from the channel surface reveal (contrast 

Figure 4[c] and [e]) heavy dislocation structures within the 2-phase, a/ß (hexagonal-close-packed 

[hcp]/body-centered-cubic [bcc]) regimes. It should be noted that grain elongation requires 

considerably more expended energy in deformation than does the generation of dislocations within 

the grains. The Ti-6/4 has a hardness profile [10] that shows an increase in hardness starting at the 

channel surface and continuing outward to about 40% of the channel radius or about 4 mm beyond 

the channel surface. There were no observations of shear bands associated with the channel 

midsection as shown for the Ti-6/4 target in Figure 4(b) and (d). Shear bands were also not 

prominent near the midsection of penetration channel in RHA as well. 

Additional differences between the two target materials occur in the formation of the plugs and 

spall rings. The RHA exhibits signs of a higher degree of ductile failure in the form of material flow 

and tearing. In contrast, the Ti-6/4 target does not exhibit these gross features, but does resemble 

a more brittle failure. The conspicuous lack of plastic flow and tearing in Ti-6/4 was previously 

observed by Woodward, Baxter, and Scarlett [11] and Holt et al. [12] for plug formation at lower 

impact velocities. Further, the appearance of a spall ring in Ti-6/4 at 1,500-m/s impact velocity (and 

not in RHA) together with the previously mentioned observations suggest that Ti-6/4 is more 

susceptible to brittle failure under impact conditions than RHA. 

As a check on any possible shifts in the cc/ß structure of the Ti-6/4 material during penetration, 

x-ray diffraction (Cu-Kcc) spectra were also compared between the initial material (far removed from 

the channel surface) and that within 1 mm of the channel surface. Results showed the ß (bcc) phase 

to dominate, and there was no change in the material near the channel surface. All peak intensities 

10 
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Figure 4. Ti-6/4 Penetration-Channel-Related Microstructures.    (a) Ti-6/4 Penetration- 
Channel Half-Section Reference. 
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Figure 4. Ti-6/4 Penetration-Channel-Related Microstructures (continued), (b) Light 
Microscope View of Microstructure Extending From the Penetration-Channel 
Surface at the Midsection. (c) Light Microscope View of the Ti-6/4 Target 
Microstructure 20 mm From the Penetration-Channel Surface. 
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(d) 

Figure 4. Ti-6/4 Penetration-Channel-Related Microstructures (continued), (d) TEM Bright- 
Field Image of Ti-6/4 Penetration-Channel-Related Microstructure Roughly 0.2 mm 
From the Penetration-Channel Surface, (e) TEM Bright-Field Image of the Initial 
Ti-6/4 Target Microstructure Corresponding to (c). 
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were enhanced uniformly for the material near the channel surface, which is consistent with the 

typical deformation-related dislocation density increases shown previously. 

Since no gross plastic deformation was observed in Ti-6/4, nor an indication of a change in the 

distribution of phases within the Ti-6/4, it would appear that the penetration process must involve 

some other mechanism. Furthermore, since the Ti-6/4 has a tendency for brittle failure under impact 

as was discussed previously, it is plausible that the penetration involves extensive fracturing of the 

material. In Figure 3(a), a small chip can be seen clinging to the channel surface. Since the cavity 

has reasonable axial symmetry elsewhere along its length, it is of interest that no such material 

particle is present on the opposite side of the channel surface. The cracks about and within the chip 

suggest that the cavity may have been formed by excavation of fractured material. 

3. Energy Analysis 

Calculations of energy partitioning during sequential phases of penetration and perforation follow 

the analysis of Grace [1]. In this model, the penetration phase involves a simultaneous process of 

rod deceleration and erosion (reduction in its length) and target acceleration and erosion or plastic 

flow (reduction in its thickness). As such, the dynamics indicate that the rod length is not entirely 

consumed during penetration, nor is the target thickness. Thus, the analysis provides the 

unconsumed target thickness zc, when target consumption (penetration) stops as 

zc = z0 exp _Pt„2 

2S 
uo (1) 

where z0 is the target initial thickness, pt is the target density, St is the target strength, and u0 is the 

penetration rate. Grace [1] also provides a near-linear relationship between u0 and striking velocity 

vs. The consumed target thickness (penetration into the target) Pc = z0 - zc corresponds to the 

distance between point A and point B in Figure 1. Also, the analysis provides residual rod length 

Cr, based on its initial length H0, and rod velocity ve at point B and the acceleration of localized target 

material in front of the penetrator to a velocity u0 as well. In general, the velocity of the remaining 

14 



rod at the end of the penetration phase will be greater than that of the target material (i.e. ve > u0). 

This condition promotes breakout. With masses and velocities defined by the momentum 

interactions contained within the theory, it is possible to calculate the associated KEs at the end of 

the penetration phase as inputs to the perforation phase, given an estimate for the cross-sectional area 

of the localized target material [2]. 

For the perforation phase, Grace [1] treats the subsequent rod-target interaction problem as 

inelastic so that after perforation, the residual rod and target plug velocities are equal. The energy 

balance under these circumstances is 

(Mr + Mc)vr
2 = Mrve

2 + Mcu0
2 -2Ef, (2) 

where Ef is the energy required to fracture the remaining target material of thickness zc, M, is the 

residual rod mass, Mc is the residual target mass (assuming its area), and vr is the residual rod 

velocity. Thus, KEs of the major masses are accounted for in the analysis. It is not necessary to 

account for the KE of the spall ring since the x-rays indicate that spall-ring velocity did not exceed 

one-tenth of the residual rod velocity even though its mass may be on the order of the plug mass. 

The fracture model for the plug is essentially that of Woodward and Crouch [13] and Holt et al. 

[12], who determined the work required for plug separation (shear) from the surrounding target plate. 

In terms of Grace's notation, the fracture energy becomes 

Ef = !*dsSszc
2 , 0) 

where Ss is the shear strength of the target material (taken here as S s = S xl ^3, where St is a nominal 

strength for the target material), and ds is the plug diameter. The energy required to fracture the spall 

ring is neglected for the cases of interest here. From the experiments it was noted that at lower 

velocities, the depth of the spall ring (as measured on the exit surface of the target) was about 5 mm 

for the Ti-6/4 while the plug thickness was 13 mm. Since fracture energy as given by equation (3) 

depends on the thickness squared, that for the spall ring is small (15%) relative to the fracture energy 
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of the plug. There was no observed spall ring on the RHA target impacted at 1,500 m/s. At high 

velocity, the fracture energy due to both plugging and spall-ring formation is relatively small 

compared to the high KEs of the rod and target masses. This notion follows from equations (1) and 

(3) since zc gets exceedingly small as rod striking velocity and, therefore, penetration rate u0 is 

increased. 

Using the previous analysis, calculations were carried out for each of the rod-target combinations 

through a range of velocities that encompass the experimental conditions. The analysis used the 

average of all measured penetration-channel exit-hole diameters as the plug diameter. These 

diameters were 21 mm for RHA and 18 mm for Ti-6/4. Also, the following material properties were 

used: for RHA, pt = 7.85 g/cm3, St = 1.09 GPa, Ss - 0.629 GPa, and C0 = 5,170 m/s; for Ti-6/4, pt 

= 4.45 g/cm3, St = 1.14 GPa, Ss = 0.658 GPa, and C0 = 6,070 m/s. Properties for the tungsten alloy 

rods were taken to be pp = 17.3 g/cm3 and Sp = 1.51 GPa, where Sp is the penetrator strength. Table 3 

contains calculated results corresponding to the experimental impact conditions. 

Table 3. Calculated Values 

Target 
Striking 
Velocity 

(m/s) 

Residual Rod 
Length 
(mm) 

Residual Rod 
Velocity 

(m/s) 
Plug Mass 

(g) 

44.69-mm RHA 1,507 
1,510 

39.91 
38.96 

1,271 
1,275 

12.508 
12.360 

40.03-mmRHA 1,973 48.64 1,904 1.252 

39.91-mm RHA 1,997 48.92 1,931 1.095 

70.21-mm Ti-6/4 1,501 
1,959 
1,980 

27.93 
34.23 
34.52 

1,096 
1,769 
1,797 

20.758 
5.243 
4.871 

Figure 5 presents a comparison of the calculations and experimental data for the residual rod 

length and velocity and plug thickness. Since the analytic results agreed well with the experimental 

results, they provided a valid basis for the energy analysis. The results of the energy calculations to 

include the KEs are presented in Table 4. The quantities of interest include initial rod KE before 
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impact, its KE after erosion and deceleration at the end of penetration into the target (first phase), 

the KE of accelerated target mass at the end of the first phase, the KE of the residual rod and target 

mass (plug) after perforation (second phase), and the fracture energy required to separate the plug 

from the target surrounds (fracture energy of breakout). The amount of KE dissipated during rod 

erosion is that lost by the rod during penetration (first phase) and is based on the difference between 

its initial KE before impact and that at the end of the penetration phase. 
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Figure 5. Comparison of Theoretical Calculations (Curves) and Experimental Data for RHA 
and Ti-6/4 to Include Residual Rod Velocity (vr h^ Residual Rod Length («r/ß0)> 
and Plug Thickness (z,/z0). 

The amount of KE dissipated from the rod by erosion and deceleration during penetration 

can appear in several forms to include KE of erosion products, work required to create the channel 
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Table 4. Energy Partition 

Target Striking 
Velocity 

(m/s) 

Initial 
RodKE 

(J) 

KE Dissipated 
During Rod 

Erosion 
(J) 

PlugKE 
Before 

Breakout 
(J) 

Fracture 
Energy at 
Breakout 

(J) 

Residual 
RodKE 

(J) 

PlugKE 
After 

Breakout 
(J) 

44.69-mm 
RHA 

1,507 
1,510 

75,206 
75,506 

41,629 
42,543 

6,271 
6,141 

177 
172 

27,129 
26,650 

10,102 
10,046 

40.03-mm 
RHA 

1,973 128,909 53,224 1,487 2 74,196 2,269 

39.91-mm 
RHA 

1,997 132,064 53,951 1,357 1 76,755 2,041 

70.21-mm 
Ti-6/4 

1,501 
1,951 
1,980 

74,609 
126,050 
129,826 

53,475 
76,434 
78,542 

4,863 
4,406 
4,206 

2,154 
137 
119 

14,117 
45,073 
46,905 

12,467 
8,204 
7,865 

cavity, acceleration of the target mass (plug), and heat. Table 4 indicates that the rod loses more KE 

to these factors when penetrating Ti-6/4 than it does in RHA plates. This result stems from the 

penetration path being longer in the Ti-6/4 while the target strengths (resistance to penetration) are 

similar. Also, since the plug thickness according to equation (1) depends on initial plate thickness, 

and the energy for plug fracture is greater by equation (3), considerably more plug fracture energy 

is expended in the Ti-6/4 target. Consequently, these two considerations provide a rationale for the 

greater efficiency of Ti-6/4 against these rods. 

Table 5 provides the results of energy rate calculations and displaced target mass estimates. Time 

rates are based on the calculated time [1] between the initial contact of the penetrator at point A 

(Figure 2) and the time the penetrator stops eroding at point B (Figure 2). Length rates are based on 

length of rod eroded for the penetrator, the distance between the point of impact (point A, Figure 2), 

and the onset of breakout (point B, Figure 2) for the target. Mass rates are based on the mass eroded 

from the penetrator and the displaced target mass in the penetration channel (target). 

When the amount of KE lost by the rod per unit path length in the target is considered, as shown 

in Table 5, the two target materials appear to be equivalent. Thus, the total energy expended is 

consistent with the work done on the target, which is proportional to the integrated effects of target 
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Table 5. Energy Rates and Displaced Mass 

Target Striking 
Velocity 

(m/s) 

KE 
Dissipated 

Time 
(J/us) 

KE Dissipated 
Length 
(J/mm) 

KE Dissipated 
Mass 
(J/e) 

Displaced Target 
Mass in 

Penetration 
Channel 

(g) 
Penetrator Target Penetrator Target 

44.69-mm 
RHA 

1,507 
1,510 

671 
689 

1,073 
1,071 

1,037 
1,058 

1,275 
1,272 

1,182 
1,205 

35.2 
35.3 

40.03-mm 
RHA 

1,973 1,456 1,771 1,345 2,104 1,534 34.7 

39.91-mm 
RHA 

1,997 1,506 1,812 1,365 2,153 1,559 34.6 

70.21-mm 
Ti-6/4 

1,501 
1,959 
1,980 

586 
1,194 
1,247 

1,053 
1,718 
1,778 

1,001 
1,159 
1,185 

1,252 
2,042 
2,112 

810 
938 
959 

66.0 
81.5 
81.9 

resistance times displacement. The displacement (path length) is greater for Ti-6/4. On the other 

hand, since it takes more time to penetrate the Ti-6/4 target, KE losses during penetration per unit 

time are similar for the two target materials. 

Table 5 also shows that the penetrator mass and length based KE rates for Ti-6/4 are similar to 

that for RHA. Thus, the mechanism for creating cavities in Ti-6/4 must involve a process that is 

similar in energy requirements as plastic deformation in RHA. However, the microstructural 

observations validate that the Ti-6/4 did not exhibit extensive plastic deformation. Further, the 

present efforts have also shown no significant change in the a/ß phase distribution; thus, this factor 

cannot contribute to energy absorption. Since Ti-6/4 is more susceptible to brittle fracture, it is 

possible that fracturing of the material initially located within the channel may occur during 

penetration. If this material could separate itself from the channel surface, possibly by shear, then 

this hypothesis is consistent with all of the observations and analyses conducted in this study. Thus, 

there is reason to pursue an energy-consuming mechanism during the creation of the channel in Ti- 

6/4 that involves extensive fracturing of Ti-6/4 material and its excavation during the penetration 

process. 
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4. Summary of Results 

The problem of target penetration and perforation has been addressed using multiple approaches 

to include (1) an energy analysis of the penetration and perforation processes, (2) specifically 

designed long rod-impact tests using tungsten alloy rods at 1,500 and 2,000 m/s against RHA and 

Ti-6/4 plates of equal areal density, and (3) metallurgical investigations of material adjacent to 

penetration channels created by impact. The experimental work and the analysis showed that Ti-6/4 

is a substantially more mass-efficient target material than RHA. The dynamics contained within the 

analysis showed that the increased efficiency of the Ti-6/4 was due to higher energy dissipation by 

the rod in that target material. While the Ti-6/4 target strength was similar to RHA, penetration 

paths (amount of target thickness) and, therefore, the forces times displacements were considerably 

larger for Ti-6/4 plates of equal areal density. Plug thicknesses were larger for the Ti-6/4, so the 

additional energy required for plug separation also contributed. 

The experiments and associated calculations indicated that length-based KE dissipation rates were 

similar in the formation of the penetration channels in both Ti-6/4 and RHA. However, the 

metallurgical observations of the channel walls showed a decisive difference in the process by which 

penetration takes place. The grain elongation and deformation structures observed show that RHA 

follows the classical cavity expansion related to plastic flow about the rod during penetration. On 

the other hand, the Ti-6/4 did not exhibit these gross plastic deformation features. Thus, since the 

Ti-6/4 has known tendencies for brittle failure, and since some evidence of brittle failure was 

observed within the penetration channel, it is plausible that Ti-6/4 undergoes extensive fracturing 

with possible excavation of the fractured material during penetration. Such a process would not 

require large amounts of plastic flow, but rather much more energy expended in fracture, and this 

view is consistent with the collective experimental observations and analyses conducted in this 

investigation. 
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